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Abstract

There have been two thrusts in the development of optical flow algorithms. One has emph
higher accuracy; the other faster implementation. These two thrusts, however, have
independently pursued, without addressing the accuracy vs. efficiency trade-offs. Althoug
accuracy-efficiency characteristic is algorithm dependent, an understanding of a gen
pattern is crucial in evaluating an algorithm as far as real world tasks are concerned, wh
often pose various performance requirements. This paper addresses many implemen
issues that have often been neglected in previous research, including subsampling, tem
filtering of the output stream, algorithms’ flexibility and robustness, etc. Their impacts
accuracy and/or efficiency are emphasized. We present a critical survey of different approa
toward the goal of higher performance and present experimental studies on accurac
efficiency trade-offs. The goal of this paper is to bridge the gap between the accuracy an
efficiency-oriented approaches.

1. Introduction

Whether the results of motion estimation are used in robot navigation, object track
or some other applications, one of the most compelling requirements for an algor
to be effective is adequate speed. No matter how accurate an algorithm may be
not useful unless it can output the results within the necessary response time
given task. On the other hand, no matter how fast an algorithm runs, it is useless u
it computes motion sufficiently accurately and precisely for subsequent interpr
tions.

Both accuracy and efficiency are important as far as real world applications are
cerned. However, recent motion research has taken two approaches in opposite
tions. One neglects all considerations of efficiency to achieve the highest accu
possible. The other trades off accuracy for speed as required by a task. These tw
teria could span a whole spectrum of different algorithms, ranging from very accu
but slow to very fast but highly inaccurate. Most existing motion algorithms are c
tered at either end of the spectrum. Applications which need a certain combinatio
speed and accuracy may not find a good solution among these motion algorithm
evaluate an algorithm for practical applications, we propose a 2-dimensional s
where one of the coordinates is accuracy and the other is time efficiency. In this s
an algorithm that allows different parameter settings generates an accuracy-effic
(AE) curve, which will assist users in understanding its operating range (accuracy
ciency trade-offs) in order to optimize the performance.
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In evaluating the accuracy-efficiency trade-offs, we also consider implementa
issues such as subsampling, temporal filtering and their effects on both accurac
speed.

Since Barron, et al. have published a detailed report [4] regarding accuracy aspe
optical flow algorithms, we start here with a survey of real-time implementations.

2. Previous Work on Real-Time Implementations

Regarding the issue of speed, there is a prevailing argument in most motion estim
literature that with more advanced hardware in the near future, the techniques cou
implemented to run at frame rate [4] . In a recent report, many existing algorith
speeds (computing optical flow for the diverging trees sequence) are compared
compiled in a tabular form[5] . We use the data from this table and calculate the
(in years) it may take for these algorithms to achieve frame rate, assuming comp
power doubles every year [28] . This result is displayed in Table 1. Note that s

algorithms can take up to 14 years (from when the table was compiled) to ach
frame rates. This would drastically limit the potential of such algorithms for ma
practical applications over the next decade.

There have been numerous attempts to realize fast motion algorithms. There ar
major approaches: the hardware approach and the algorithmic approach. The
summarized in Table 2 and Table 3 given below and elaborated in the following p
graphs.

Table 1: Existing algorithms’ speed and expected time to achieve frame rate

Techniques Horn Uras Anandan Lucas Fleet Bober

Execution time (min:sec)
(from [5] )

8:00 0:38 8:12 0:23 30:02 8:10

Approximate execution
time on HyperSparc 10

2:00 0:10 2:03 0:06 6:00 2:03

Expected time to achieve
frame rate (years)

12 8 12 7 14 12

Table 2: Real-time motion estimation algorithms—hardware approach

Category Type Difficulties

Parallel comput-
ers

Connection machine [6] [26] [37] [39] , Parsytec
transputer [32]  and hybrid pyramidal vision
machine (AIS-4000 and CSA transputer)[11]

high cost, weight
and power con-

sumption

Image processing
hardware

PIPE [1] [9] [29] [35] , Datacube [25]  and
PRISM-3 [27]

low precision

Dedicated VLSI
chips

Vision Chips: gradient method [23] [34] , corre-
spondence method [10] [33]  and biological

receptive field design [12] [22]

low resolution

Non-Vision Chips: analog neural networks [17]
digital block matching technique [3] [15] [38]

coarsely quantized
estimates
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The hardware approach uses specialized hardware to achieve real-time perform
There have been three categories of specialized hardware employed for motion es
tion: parallel computers, specialized image processing hardware and dedicated
chips. The hardware approach generally suffers from high cost and low precision

The most popular algorithmic method is to compute sparse feature motion. Re
advances in this approach have enabled versatile applications including trac
[1] [20] [24] , computing time-to-contact (and hence obstacle avoidance)[9] and e
segmentation [32] , which were believed to be better handled with dense data. H
ever, in order to interpret the scenes with only sparse features, these algorithms n
use extensive temporal information (e.g., recursive least squares, Kalman filter
which is time-consuming. Therefore, either the speed is not satisfactory[1] or
need to run on special hardware to achieve high speed[9] [20] [32] .

Another method is to constrain the motion estimation to a more tractable problem
example, images can be subsampled so that the maximum velocity is constrained
less than 1 pixel per frame. Therefore, a correlation method [8] can simply perf
temporal matching in linear time instead of spatial searching in quadratic ti
Another technique is to use a different projection. For example, any 3-D vertical
appears as a radial line in a conic projected image. This fact has been exploite
real-time navigation[40] .

Another elegant idea is to work on efficient design and implementation of the fl
estimation algorithm. The main goal of this approach is to reduce the computati
complexity. Suppose the image size is and the maximum motion velocity is .
ditional correlation algorithms performing spatial search or gradient-based algorit

using 2-D filters have the complexity . Several recent spatio-temporal fi

based methods [13] [14] even have complexity. However, some recent a

rithms have achieved complexity. These include a correlation-based algor
that uses 1-D spatial search [2] and a gradient-based algorithm [18] that exploits
separability. These algorithm are so efficient that they achieve satisfactory rate on
eral purpose workstations or microcomputers.

3. Accuracy vs. Efficiency Trade-offs

Table 3: Real-time motion estimation algorithms—algorithmic approach

Technique Algorithms Difficulties

Sparse fea-
ture motion

tracking [1] [20] [24] , computing time-to-contact
(and hence obstacle avoidance)[9]  and segmenta-

tion [32]

requirement of tem-
poral filtering

Special con-
straints

constraint on motion velocity [8] , constraint on pro-
jection [40]

constraint on input
images

Efficient algo-
rithm

1-D spatial search [2] , separable filter design (Liu’s
algorithm[18] )

requirement of
careful algorithm

design

S V

O V
2
S( )

O V
3
S( )

O VS( )
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Although real-time is often used to mean vide
frame rates, in this paper, real-time is loose
defined as sufficiently fast for interactions with
humans, robots or imaging hardware. The fo
lowing subsections discuss the issues that a
only of interest when one is concerned abo
both accuracy and speed. All the experimen
illustrating our discussions are done on th
diverging tree sequence[4] .

3.1 Accuracy-efficiency curve

If a motion algorithm is intended to be applied in a real-world task, the overall per
mance, including accuracy and efficiency, should be evaluated. Analogous to th
of electronic devices (e.g., transistor), without the knowledge of an algorithm’s
operating range and characteristics, one may fail to use it in its optimal condit
Using accuracy (or error) as one coordinate and efficiency (or execution time) a
other, we propose the use of a 2-D accuracy-efficiency (AE) curve to characteriz
algorithm’s performance. This curve is generated by setting parameters in the
rithm to different values.

For correlation methods, the template window size and the search window size
common parameters. For gradient methods, the (smoothing or differentiation)
size is a common parameter. More complex algorithms may have other paramet
consider. The important thing is to characterize them in a quantitative way.

For optical flow, accuracy has been extensively researched in Barron, et al.[4]
will use the error measure in [4] , that is, the angle error between computed

and the ground truth flow , as one quantitative criterion. For e

ciency, we use throughput (number of output frames per unit time) or its recipr
(execution time per output frame) as the other quantitative criterion.

In the 2-D performance diagram depicted below (Fig 2.), the axis represents

angle error; the axis represents the execution time. A point in the performance
gram corresponds to a certain parameter setting. The closer the performance poin
the origin (small error and low execution time), the better the algorithm is. An al
rithm with different parameter settings spans a curve, usually of negative slope.
distance from the origin to the AE curve represents the algorithm’s AE performa

In Fig 2, there are two AE curves and several points*. It can be seen that some algo
rithms (e.g., Fleet & Jepson[13] ) may be very accurate but very slow while so

* The implementations of all algorithms except Liu, et al. and Camus are provided by
Barron [4] . Some of the algorithms produce different density, we simply project the er-
ror by extrapolation. In Liu’s curve, the filter size used range from 5x5x5 to 17x17x11.
In Camus’s curve the template size ranges from 7x7x2 to 7x7x10. The execution time
for all algorithms is the approximate elapsed time running on the same machine
(80MHz HyperSparc 10 board).

Fig 1. Diverging tree sequence
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algorithms (e.g., Camus[8] ) may be very fast but not very accurate. In terms of
performance, Liu, et al.’s algorithm [18] is most flexible and effective because
curve is closest to the origin. It is also interesting to find that Liu, et al.’s curve [18]
relatively horizontal and Camus’s [8] curve is relatively vertical they intersect e
other.

The AE curve is also useful in understanding the effect and cost of certain type
processing. For example, Fig 3 shows the effect and cost of using different orde
image derivatives in Liu, et al.’s algorithm. The trade-off is clearer in this examp
Using only up to second order derivatives saves 50% in time while sacrificing 85%
accuracy.

3.2 Subsampling effect

The computational complexity of an optical flow algorithm is usually proportional
the image size. However, an application may not need the full resolution of the d
tized image. An intuitive idea to improve the speed is to subsample the images.
sampling an image runs the risk of undersampling below the Nyquist freque
resulting in aliasing, which can confuse motion algorithms. To avoid aliasing, the
tial sampling distance must be smaller than the scale of image texture and the tem
sampling period must be shorter than the scale of time. That is, the image inte
pattern must evidence a phase shift that is small enough to avoid phase ambiguity

Subsampling should be avoided on an image sequence with high spatial frequenc
large motion. The aliasing problem can be dealt with by smoothing (low-pass filter

Fig 2. 2-D performance diagram
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before subsampling. However, since smoothing is done on the original images an
computational cost is proportional to the original image size, the advantage of sub
pling is lost.

Aliasing is not the only problem in subsampling. Object size in subsampled imag
reduced quadratically but the object boundaries are reduced linearly (in terms of n
ber of pixels). Hence the density of motion boundaries are higher. This is detrime
to optical flow algorithms in general.

In short, subsampling can improve efficiency but needs a careful treatment.

3.3 Temporal processing of the output

Most general purpose optical flow algorithms are still very inefficient and often op
ate on short “canned” sequences of images. For long image sequences, it is natu
consider the possibility of temporally integrating the output stream to achieve be
accuracy.

Temporal filtering is often used in situations where noisy output from the previ
stage cannot be reliably interpreted. Successful applications of temporal filterin
the output requires a model (e.g., Gaussian with known variance) for noise (Kal
filtering) or a model (e.g., quadratic function) for the underlying parameters (recur
least squares). Therefore, these methods are often task specific.

A general purpose Kalman filter has been proposed in [31] where the noise mod
tied closely to the framework of the method. In this scheme, an update stage req
point-to-point local warping using the previous optical flow field (as opposed to glo
warping using a polynomial function) in order to perform predictive filtering. It
computationally very expensive and therefore has little prospect of real-time im
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Fig 3. The effect and cost of using different order of derivatives.
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mentation in the near future. So far, Kalman filters and recursive least square fi
implemented in real-time are only limited to sparse data points [20] [9] .

We have experimented with a simple, inexpensive temporal processing approa
exponential filtering. We found out that when the noise in the output is high or the
put is expected to remain roughly constant, exponential filtering improves accu
with little computational overhead. However, when the scene or motion is very c
plex or contains numerous objects, exponential filtering is less likely to improve a
racy.

3.4 Flexibility and robustness

It has been pointed out that some motion algorithms achieve higher speed by
straining the input data, e.g., limiting the motion velocity to be less than a cer
value, thus sacrificing some flexibility and robustness. Some algorithms optimize
performance for limited situations. For good performance in other situations, u
may need to retune several parameters. It is thus important to understand how
constraints or parameter tuning affects the accuracy. Flexibility refers to an a
rithm’s capability to handle widely varying scenes and motions. Robustness refe
resistance to noise. These two criteria prescribe an algorithm’s applicability to gen
tasks.

To evaluate an algorithm’s flexibility, we have conducted the following simple exp
ment. A new image sequence is generated by taking every other frame of the dive
trees sequence. The motion in the new sequence will be twice as large as that
original sequence. We then run algorithms on the new sequence using the same p
eter setting as on the original sequence and compare the errors in the two outpu
flexible algorithm should yield similarly accurate results, so we observe performa
variation rather than absolute accuracy here. Fig 4 illustrates the results. The
rithms’ performance variation for these two sequences ranges from 16% (Liu, et a
75% (Horn & Shunck). Fleet and Jepson’s algorithm, which has been very accu
failed to generate nonzero density on the new sequence so is not plotted.

To evaluate an algorithm’s noise sensitivity or robustness, we have generated a
diverging tree sequence by adding Gaussian noise of increasing variance and ob
the algorithms’ performance degradation. Fig 4 illustrates the algorithms’ noise se
tivity. Some algorithms (Lucas & Kanade, Liu, et al., Anandan, Camus) have lin
noise sensitivity with respect to noise magnitude; some (Fleet and Jepson) show
dratic noise sensitivity.

3.5 Output density

With most algorithms, some thresholding is done to eliminate unreliable data and
hoped that the density is adequate for the subsequent applications. In addition
threshold value is often chosen arbitrarily (by users who are not experts on the
rithms) without regard to the characteristics of the algorithms. The important cha
teristics that should be considered are flexibility and robustness to noise. I
algorithm is accurate but not flexible and not robust to noise, then it is better off ge
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ating a sparse field because the more data it outputs, the more likely it will con
noisy data. However, the output density should really be determined by the req
ments of the subsequent applications. Although dense flow field is ideal, selectin
right density of sufficiently accurate output is perhaps a more practical approach

Specific experiments in [18] [19] using NASA sequence have shown output densi
well as accuracy is the decisive factor in obstacle avoidance.

4. Conclusion

Motion research has typically focused on only accuracy or only speed. We h
reviewed many different approaches to achieving higher accuracy or speed
pointed out their difficulties in real world applications. We also have raised the iss
of accuracy-efficiency trade-offs resulting from subsampling effects, temporal
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Fig 4.Algorithms’s flexibility in handling different motion.

Fig 4.1 Noise sensitivity for 50%
density data

Fig 8.2 Noise sensitivity for
100% density data.
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cessing of the output, algorithm flexibility and robustness, and output density.
only through consideration of these issues that we can address a particular algori
applicability to real world tasks. The accuracy-efficiency trade-off issues discus
here are by no means exhaustive. We hope that this initial study can generate
interesting discussions and shed some light on the use of motion algorithms in
world tasks.
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